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We consider a small droplet of water sitting on top of a heated superhydrophobic
surface. A toroidal convection pattern develops in which fluid is observed to rise along
the surface of the spherical droplet and to accelerate downwards in the interior towards
the liquid/solid contact point. The internal dynamics arise due to the presence of a
vertical temperature gradient; this leads to a gradient in surface tension which in turn
drives fluid away from the contact point along the interface. We develop a solution to
this thermocapillary-driven Marangoni flow analytically in terms of streamfunctions.
Quantitative comparisons between analytical and experimental results, as well as
effective heat transfer coefficients, are presented.

1. Introduction
Non-wettability, effective heat transfer coefficients and other material properties of

hydrophobic surfaces are of interest in many industrial applications, such as efficient
condenser design and waterproofing textiles. Since Wenzel (1936) and Cassie & Baxter
(1944) noted 70 years ago that the hydrophobicity of a substrate can be enhanced
through a combination of chemical modification and surface roughness, multiple
studies have observed a substantial increase in static contact angles by integrating
these two strategies. More recently the non-wetting properties of these substrates
have been further enhanced and contact angles close to 180◦ have been achieved by
introducing nanoscale roughness (e.g. Quéré 2002; Bico, Marzolin & Quéré 1999;
Zhao et al. 2005).

Numerous techniques have been developed over the past decade for fabricating
robust superhydrophobic surfaces by combining chemical non-wetting treatments
with controllable levels of roughness over a wide range of length scales. General
discussions of the principles for preparing such surfaces are given by Quéré (2003)
and by Otten & Herminghaus (2004). Onda et al. (1996) used fractal patterns formed
in an alkene wax to produce the first superhydrophobic surfaces with contact angles
greater than 160◦. Since then surfaces have been prepared using a variety of material
processing techniques including: lithographically patterned silicon posts having a wide
range of aspect ratios (Lafuma & Quéré 2003; Krupenkin et al. 2004); silicone arrays
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Heat transfer via phase change on hydrophobic surfaces

Condensation Boiling Spray cooling

Dropwise Film Nucleate Film Droplet Film

COLD COLD

HOT

HOT HOT HOT HOT

Erb & Thelen N/A Kandlikar (2001) Present N/A
(1965) Thomas et al. (2003) study

Table 1. Summary of heat transfer in various geometries from superhydrophobic surfaces. A
few representative studies are listed in each regime.

patterned using soft lithography (He, Patankar & Lee 2003); layer-by-layer (LBL)
assembled polymeric coatings decorated with nanoparticles (Zhai et al. 2004); and
microporous polymeric silica structures (Gao & McCarthy 2006) in addition to the
vertically aligned carbon nanotube carpets (Lau et al. 2003) used in the present study.
In many of these formulations the surface coating consists of polymeric or ceramic
constituents that are poor thermal conductors which limits the efficacy of the surface
in heat transfer applications. One of the advantages of the carbon nanotube carpets
employed in the present work is the high axial thermal conductivity of the graphene
sheets that form the multiwall nanotubes.

Heat transfer properties of hydrophobically modified surfaces have primarily
been studied in the context of condensation on cooled substrates (see table 1).
In most applications, dropwise condensation is preferable to film condensation as
the continuous condensed fluid film acts as an insulating layer, resulting in lower
heat transfer coefficients (Schmidt, Schurig & Sellschopp 1930). Thus, it is often
advantageous to promote dropwise condensation by changing the wettability of
the relevant surfaces, making them hydrophobic (e.g. Erb & Thelen 1965). Recent
studies have taken this one step further; by introducing wettability gradients into the
substrate, condensing drops rapidly move towards more hydrophilic regions providing
a passive mechanism that can increase effective heat transfer coefficients by an order
of magnitude (Daniel, Chaudhury & Chen 2001).

The reverse problem of a liquid impinging on a hot surface has been less well studied
in the context of hydrophobic surfaces though numerous articles exist describing the
evaporation of a single drop on a partially wetting substrate (e.g. Sadhal & Plesset
1979; Makino et al. 1984; Deegan et al. 1997) and extensive studies have been
performed on the Leidenfrost effect (see, e.g. recent work by Biance, Clanet & Quéré
2003). It has also been demonstrated that the effective heat transfer in such droplet
systems can be significantly enhanced by adding surfactant to the fluid, decreasing
the contact angle and promoting nucleation within the impinging droplet (Qiao &
Chandra 1997; Jia & Qiu 2002). One of the few studies that incorporates the effects
of hydrophobicity is McHale et al. (2005) in which a slowly evaporating droplet on a
patterned polymer surface was investigated. Unlike our system, the substrate was not
heated and hence the droplet remained in a parameter regime in which Marangoni
stresses were negligible.

In addition, a limited number of studies have investigated the effects of surface
chemistry on boiling. Wang & Dhir (1993) conducted an experimental study to
quantify the effects of surface wettability on the density and distribution of nucleation
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Figure 1. Schematic illustration and notation for a droplet on a superhydrophobic surface.

sites. They confirmed that increasing wettability both shifts the boiling curve to the
right and increases the maximum heat flux. They also found that the fraction of
cavities that nucleate bubbles decreases as the wettability of the surface improves.
Kandlikar (2001) presents a nice review and brief history of the study of pool boiling.
The author then goes on to derive a mathematical model to predict critical heat fluxes
which account for the effects of hydrophobicity (through changes in the static contact
angle), vapour momentum and gravity. Predictions from this model are successfully
compared with existing experimental data. More recently, Thomas et al. (2003) per-
formed an experimental study in which the authors applied short microsecond voltage
pulses to investigate the effect of surface properties on fast transient microboiling.

However, the full problem of understanding the heat and mass transfer properties
of a single stationary droplet or bubble on a heated hydrophobic surface is further
complicated by the presence of a mobile free surface. Gradients in temperature
along the free surface lead to gradients in surface tension which may in turn
drive thermocapillary Marangoni convection (Marangoni 1865) within the drop
(as illustrated in figure 1). A detailed and extensive literature on thermocapillary-
driven flows exists and both experimental and theoretical studies are reviewed in
Schatz & Neitzel (2001) and Davis (1987), respectively, and in Subramanian &
Balasubramaniam (2001) which considers thermocapillary motion in droplets and
bubbles.

One of the few analyses that has carefully investigated the effects of Marangoni
stresses in evaporating sessile drops is the recent study by Hu & Larson (2005). In
this work, the authors model convection in a droplet on a partially wetting surface
using both a lubrication analysis and a full finite element model (FEM). They find
that convection rolls are observed – with a downwelling in the centre of the droplet –
driven by a non-uniform temperature distribution at the surface of the droplet which
arises from evaporative cooling. Surprisingly, the lubrication approximation is in good
agreement with the FEM even for contact angles as high as 40◦.

In this study, we investigate Marangoni convection within a single droplet on a
heated superhydrophobic surface. The analysis differs from that of Hu & Larson
(2005) in that our droplet is nearly spherical and hence not amenable to lubrication
techniques. Ultimately, by comparing experimental data with analytic predictions, we
can extract a value for the effective heat transfer coefficient of the system. In § 2
we describe the experimental setup and procedure. In § 3 we derive the governing
equations for the system which are then solved analytically in § 4. Section 5 presents
a quantitative comparison of analytic and experimental results.
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Figure 2. Schematic illustration of the experimental setup.
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Figure 3. (a) Photo of a water droplet (0.5 mm radius) on a superhydrophobic surface seeded
with silica tracer particles. The inset shows an SEM image of the surface coated with a carbon
nanotube forest. (b) Thermal image of a drop deposited on the heated substrate showing
contours of constant temperature. (c) Superposition of 20 consecutive snapshots of the water
droplet taken at 10 ms time intervals, showing the inner convective motion of the fluid. Particles
are moving downwards in the centre of the droplet. The ‘stem’ at the top of the droplet is the
glass capillary that was used to deposit the droplet. The capillary was removed before any data
was recorded. It bears emphasis that for illustration purposes, images (b) and (c) were taken
using larger values of heat flux and brighter lighting than those used in data collection. In
subsequent experiments, the temperature at the heating plate was lowered in order to remain
in the stable roll regime, and the light source was dimmed to avoid thermal contamination.

2. Experimental setup
A schematic illustration of the experimental setup is shown in figure 2.

Monodisperse silica particles 300 nm in diameter were added to deionized water
at a concentration of 1 wt % in order to track convective motions (see figure 3).
The droplets were formed at the tip of a thin glass capillary approximately 10 μm in
diameter and were deposited on a silicon wafer coated with a vertically aligned carpet
of carbon nanotubes (for details on the non-wetting properties and manufacture of
the superhydrophobic surface see Lau et al. 2003). The radii of the droplets ranged
between 0.4 and 0.6 mm and contact angles were near 180◦ (see figure 3a). The
superhydrophobic surface was heated from below via a heating plate with variable
input current.

As soon as the liquid droplet is put in contact with the heated surface, the fluid is
set in motion and convective structures develop. In order to visualize the temperature
and velocity fields, both optical and infrared images of the droplet were captured.
Figure 3(b) is a thermal image of the droplet taken with an infrared camera (FLIR
Systems ThermaCAM, which reveals a temperature gradient inside the droplet that
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is roughly oriented towards the contact point. The maximum temperature variation
within the drop ranged from approximately 1 ◦C to 20 ◦C and the temperature of
the substrate did not exceed 50 ◦C. Particle paths were visualized using a Phantom
HSV v5.0 high-speed camera at 400 fps in conjunction with a long-distance video
microscope system (K2 Infinity). The droplets were illuminated from behind with a
diffuse light source, as represented in figure 2. The image is focused on the thin glass
capillary, which corresponds to the midsection of the droplet. The local velocity field
within the droplet was measured by tracking small solid particles within the focal
plane at the centre of the droplet (see figure 3c). Particles within the focal plane appear
as sharp points – although some residual blurry images of particles that are close to,
but out of, the focal plane remain in the image. Typical velocities of the inner flow
near the centre of the droplet were measured to be approximately umeas ≈ 1 mm s−1

and the characteristic time scale for one complete cycle of the convective structures
was of the order of 1 s. Particle velocities were observed to increase significantly in
the vicinity of the heat source (by at least an order of magnitude). At the surface of
the droplet, the fluid is convected upwards, away from the heat source. In the focused
midsection of the droplet, particles are accelerated downwards, away from the free
surface towards the contact point P (see figure 1 for notation). Also, particles that
are initially out of the plane of focus are observed to move towards the focal plane
and the contact point P . This suggests an axisymmetric toroidal geometry for the
convective structures. Data was recorded for various values of heat input and drop
size.

On a clean carbon nanotube surface, the convective structures are observed to reach
a stable steady state. However, the observed structures are extremely sensitive to the
substrate properties. As particles left by previous experiments accumulated on the
substrate, the quality of the surface degraded and the stability of the observed
convection rolls declined. After several seconds the structures became unstable
ultimately culminating in an unstructured swirling of the entire droplet. Owing to the
extreme sensitivity of the convection pattern to the quality of the substrate, all the
experimental data presented herein was taken on a clean freshly prepared surface.

3. Physical model
Consider a liquid of dynamic viscosity μ, density ρ, thermal conductivity kw , specific

heat Cp , saturation temperature Ts and latent heat of vaporization Lv . We assume that
the carbon nanotube surface heats the liquid droplet of radius a at the contact point P

and we neglect any radiative heat transfer. There are at least three possible mechanisms
that could drive convection in the droplet: buoyant convection, Marangoni (surface
tension-driven) convection or mass flow arising from a pinned contact line coupled
with spatially non-uniform evaporation, as in the ‘coffee stain’ problem (Deegan
et al. 1997). As our experiments are performed on a superhydrophobic surface,
the contact line is free to move and we can rule out the coffee ring phenomenon.
Hence, we consider the possibility of Marangoni and/or buoyant convection. Note
that both are theoretically possible as the temperature inside the droplet increases
locally near the contact point creating a temperature gradient directed towards P .
Since both the surface tension and the density of water increase as the temperature
decreases, this temperature gradient generates both a gradient in surface tension at the
interface – which drives the fluid upwards at the surface of the droplet – and a gradient
in density which represents an unstable configuration with heavy fluid on top of lighter
fluid.
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In our experiments there is palpable evidence that the driving mechanism cannot
be buoyancy as the rolls are going in the wrong direction – with a downwelling
in the centre of the droplet and an upflow at the interface. However, despite this
clear indication of Marangoni convection, as observed by Scriven & Sternling (1964),
‘because flows actually powered by . . . interfacial tension have been overlooked or
misconstrued so often, there seems to be a need for simple criteria by which they can
be recognized’. In light of this prevalent misconception, it is worth examining in some
detail under what conditions we expect to see Marangoni flows in our droplets.

The Rayleigh number Ra = αtga3�T/νκ – which determines stability in buoyant
convection – is roughly 50 in our experiments. For reference, the critical Rayleigh
numbers characterizing the onset of buoyancy-driven instabilities are typically of
the order of 103 depending on geometry; for convection between two flat plates,
the critical Rayleigh number is 1707, for a sphere under radial gravity it is 3091
(Chandrasekhar 1961). Judging by these typical numbers one might be tempted to
speculate that a Rayleigh number of 50 would place our droplet well within the stable
regime. However, some care must be taken as these critical values depend on the
geometry of the system. In our case, since there are regions in which the direction
of the tangent to the free surface aligns with the direction of gravity, the flow is
more prone to instability. Hence, here we perform a scaling analysis to determine
under what conditions we expect to observe Marangoni convection in our particular
geometry.

3.1. Scaling

Both the Rayleigh number and the Marangoni number can be interpreted as a
ratio of time scales: namely the ratio of the characteristic time scale associated with
thermal diffusion which stabilizes the flow, τdiff ∼ a2/κ , to the characteristic time scale
associated with convection. In our analysis we will denote these convective time
scales as τB for flows driven by density gradients and τM for flows driven by surface
tension gradients. If the stabilizing diffusive time scale is short compared to τM and
τB , i.e. if the dimensionless quantities Ma ≡ τdiff /τM and Ra ≡ τdiff /τB are small, the
system is stable and there is no convection. Similarly, if the system is unstable, we
expect Marangoni convection to be dominant if Ma/Ra = τB/τM is large, and buoyant
convection to be dominant if this ratio is small. To determine which of these is the
principal effect in our system, we need to estimate τB and τM for our particular
geometry.

The characteristic velocity of Marangoni flows scales like UM ∼ α�T/μ (see, e.g.
(3.14)). To find the characteristic velocity associated with buoyant convection, we
balance the rate of viscous dissipation within the roll with the rate at which potential
energy is gained as the heavier fluid descends∫

μ(∇u)2 dV ∼ �ρgUBa3. (3.1)

The integral on the left scales as μ(UB/a)2a3, hence the characteristic velocity
associated with buoyancy-driven convection is UB ∼ �ρga2/μ. This velocity can also
be written as UB ∼ αtρga2�T/μ with �ρ ∼ αtρ�T . As discussed above, in general,
the instability with the fastest growth rate, or the shortest characteristic time scale,
will be the one that is observed. Using our estimates for typical velocities associated
with Marangoni and buoyant convection, we can estimate the ratio of convective



Convection in droplets on superhydrophobic surfaces 107

time scales as
UM

UB

∼ τB

τM

∼ α�T

�ρga2
∼ α

αtρga2
. (3.2)

It bears emphasis that this ratio of time scales corresponds to the ratio of
the Marangoni number over the Rayleigh number τB/τM = Ma/Ra, with Ra =
αtga3�T/νκ and Ma = αa�T/κμ. From (3.2) it is clear that, as with convection in
thin films, we expect to observe Marangoni convection at small length scales (i.e. in
thin films and small drops) and buoyant convection for larger length scales (thicker
layers and larger drops) (Scriven & Sternling 1964). For water, the transition to
buoyancy-dominated convection occurs around a � 1 cm which is considerably larger
than the droplets in our experiment.

However, this is not the whole story. Although we are far from the onset of
buoyancy-driven convection in our experiments, there is another gravity-driven
instability that one might expect to observe. Namely, as the fluid is heated from
below, and cooled from above, we have the inherently unstable situation of a sphere
with its centre of mass above its geometric centre – hence, the droplet should roll. For
a sphere, this instability should manifest for arbitrarily small Rayleigh numbers. In
our experiments, we are saved from this complication because, in the neighbourhood
of the contact point, the sphere is slightly deformed giving the droplet a stabilizing
base. The extent and effectiveness of this finite size contact region can be calculated
following the arguments of Mahadevan & Pomeau (1999), who found that the size of
the contact region � scales like the inverse capillary length �C , namely,

� ∼ a2

�C

= a2

√
ρg

σ
. (3.3)

Again, the characteristic velocities and time scales associated with rolling can be
computed by balancing the rate of potential energy gained by rolling with the rate of
viscous dissipation. In this case, the viscous dissipation is restricted to the deforming
contact region (as the rest of the drop is in solid body rotation):∫

μ(∇u)2 dV ∼ μ

(
UR

a

)2

�3 ∼ �ρgURa3. (3.4)

Hence, the characteristic velocity associated with rolling UR is given by UR ∼
�ρg�3

C/(μa). Comparing the time scale associated with the onset rolling with that of
buoyancy-driven convection, we find

τR

τB

∼ UB

UR

∼ a3

�3
C

= Bo3/2, (3.5)

where Bo is the Bond number. As expected, rolling will manifest at small Bond
numbers.

All three time scales are summarized in figure 4 where the material parameters have
been chosen for water. As one can see from the figure we expect to see transitions
between the three types of instabilities as one varies the radius of the droplet. For
very small drops, we expect to see rolling (a � 0.3 mm). This is consistent with our
experimental observations as very tiny droplets either roll off the apparatus or, if
they are pinned with a pipette, exhibit large swirling motions on the scale of the
droplet. For droplet sizes in the range 0.3mm � a � 7 mm, we expect to observe
Marangoni convection – namely toroidal convection rolls flowing inward. This is
what was observed in the bulk of our experiments. Finally, for very large droplets
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Figure 4. Characteristic convective time scales for various sizes of water droplets. The grey
shaded region indicates the range of droplet sizes in our experiments. Material parameters
correspond to those of water with �T =1 ◦C. Note that, as all three curves scale linearly
with �T , changing the temperature difference does not change the radius at which the curves
intersect – rather it rescales the vertical axis.

(a 	 7 mm) we expect to see a transition to buoyant convection. This parameter range
was outside our regime of interest as the ‘droplets’ are considerably larger than the
capillary length and deviate from the spherical geometry assumed herein. Hence we
restricted our experimental data to droplets below this transition.

3.2. Governing equations

Having established that Marangoni convection is the dominant instability within the
parameter regime represented in our experiments, we present a model that combines
conservation of energy and a balance of linear momentum, that incorporates the first-
order effects of surface tension gradients subject to the relevant boundary conditions.
In this analysis, we consider the small Reynolds number limit and neglect inertial
effects within the drop†. Thus, the governing equations for the fluid motion are the
incompressible Stokes equations

∇p = μ∇2u, ∇ · u = 0, (3.6)

where p and u are the pressure and velocity fields within the droplet, respectively.

† Some care must be taken in defining the Reynolds number as the velocity varies considerably
within the droplet owing to the mathematical singularity at the point of contact where both the
temperature field and velocity field diverge. In this small region, neither the Péclet number Pe
nor the Reynolds number is small. Elsewhere (in more than 99 % of the volume of the droplet),
the flows are slow and inertia is negligible (Re � 1) in both the experiment and in the analytical
solution. If the neighbourhood in which Re becomes significant is sufficiently small, we expect the
model to capture the experimentally observed structures reasonably well away from the point of
contact; however, one cannot expect the model to accurately reflect the behaviour of the flow in
the neighbourhood of the singularity. In reality, this singularity is mitigated by the finite extent of
the contact region; estimates for the size of this region are discussed in § 3.1.
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Symbol Value

Gravity g 9.8 m s−2

Density of water ρ 9.982 × 102 kg m−3

Dynamic viscosity of water μ 1.002 × 10−3 kg m−1 s−1

Kinematic viscosity of water ν 1.004 × 10−6 m2 s−1

Specific heat of water Cp 4.182 × 103 J kg−1 K−1

Thermal conductivity of water kw 5.9 × 10−1 Wm−1 K−1

Thermal conductivity of air kair 2.4 × 10−2 Wm−1 K−1

Thermal diffusivity of water κ 1.41 × 10−7 m2 s−1

Coefficient of thermal expansion αt 3.0 × 10−4 K−1

Change in surface tension due to temperature α = ∂σ/∂T −0.155 × 10−3 kg s−2 K−1

Latent heat of vaporization Lv 2.454 × 106 J kg−1

Saturation temperature at atmospheric pressure Ts 373 K
Atmospheric temperature Ta ∼ 295 K
Characteristic radius of the droplets a ∼ 0.5 × 10−3 m

Table 2. Characteristic values of relevant physical parameters.

The governing equation for the heat transfer problem is given by conservation of
energy

ρCp

(
∂T

∂t
+ u · ∇T

)
= kw∇2T + φ − Φsδ(r − r0), (3.7)

where φ is the viscous dissipation per unit volume and T is the temperature field
within the droplet. In (3.7), the heat conduction term scales as kw�T/a2 ≈ 106

for a characteristic temperature difference inside the droplet of about 10 K. On the
other hand, the viscous dissipation term scales as μumeas

2/a2 ≈ 10−3 and is therefore
negligible relative to conduction. In this simple system, heat exchange takes a number
of different forms – convection, conduction and evaporation – at the boundary
as summarized in figure 1. The small region of contact between the hydrophobic
surface and the droplet is modelled as a point heat source†. We thus include a delta
function at the contact point of intensity Φs , where Φs is expressed in J s−1 and r0

is the vector postion of the contact point. Alternatively, the three-dimensional delta
function δ(r − r0) in (3.7) can be written as δ(r − r0) = δ(|r − r0|)/4π|r − r0|2.

Using values from table 2, the characteristic time scales for heat advection and
diffusion are given by

tdiff =
ρCpa2

kw

≈ 1 s , tadv =
a

umeas

≈ 1 s. (3.8)

In our experimental observations, the vortex structure was observed to be stable for
at least 60 s. Thus, the convection rolls can reasonably be assumed to be a steady-
state phenomenon over the time scale of the experiment and we neglect the time
dependency in the energy equation.

The Péclet number Pe can be written as the product of the Reynolds number Re
and the Prandlt number Pr:

Pe = Re · Pr. (3.9)

† Appendix C investigates the effect of the point heat source assumption on the solution.
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Although not rigorously negligible throughout the entire domain in the experiments,
the convective effects scale with Re as the Prandtl number is constant for a given
fluid; for water, Pr = μCp/kw ≈ 7.2. Therefore, the Péclet number is considered small
in the following analytical study (to be consistent with the small Reynolds number
assumption above), and diffusion is considered to be the major mode of heat transfer
inside the droplet†. Thus the governing heat equation reduces to Poisson’s equation
for the temperature field:

kw∇2T = Φs

δ(|r − r0|)
4π|r − r0|2 . (3.10)

3.3. Boundary conditions

At the surface of the droplet both heat transfer, via convection and conduction to
the surrounding air, and evaporation tend to cool down the droplet. The convective
and conductive heat transfer at the interface between the water droplet and the
surrounding air is modelled with Newton’s law of cooling (e.g. Incropera & deWitt
2002), which can be written as

φt = ht (T − Ta), (3.11)

where φt is the total heat flux due to convection and conduction, ht is the heat transfer
coefficient and Ta is the ambient temperature.

The local energy loss due to evaporation can be written as

φevaporation = J [Cp(T − Ts) + Lv], (3.12)

where J is the local mass flux due to evaporation. In our case T − Ts ≈ 60 K, thus
Cp(T −Ts) ≈ 105 J kg−1 and Lv ≈ 106 J kg−1. Therefore, we neglect the first term in (3.12)
and assume that the latent heat of vaporization does not depend on temperature. The
local mass flux J depends on a number of variables including the temperature at the
interface T , the pressure at the interface p, the relative humidity of the air Hm and the
local curvature R−1. Over the time scale of the convective structure p, Hm and R−1 are
all constant, and J can be written as a function of the local temperature T only. For
small temperature differences, the mass flux J can be safely approximated as a linear
function of T . Recall that the temperature is a function of position T = T (r) and
hence the first-order effects of the geometry of the droplet on the flux are accounted
for via the temperature field.

Combining the two terms φt (3.11) and φevaporation (3.12), the energy flux boundary
condition at the surface of the droplet takes the form

−kw∇T · n = h(T − T0), (3.13)

where h is the effective total heat transfer coefficient, n is the unit vector normal to
the interface and T0 is a reference temperature. Because the equation is linear in the
temperature T , the reference temperature T0 can be scaled out of the problem and
does not enter into our calculation.

The boundary conditions for the Stokes equations (3.6) correspond to a stress
balance at the surface of the droplet projected in the normal and tangential directions.
The normal stress balance is replaced by the assumption that the droplet remains
spherical. This assumption is experimentally satisfied because the Bond number,
characterizing the ratio of gravity over surface tension, is small (Bo = ρga2/σ � 1)

† The effects of finite Péclet number are explored in Appendix D.
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and because of the non-wettability of the substrate. The tangential stress balance can
be written as follows:

t · π · n = t · ∇sσ, (3.14)

where π is the stress tensor, t is the unit vector tangent to the interface, ∇s is the
gradient along the surface and σ = σ (T ) is the surface tension. Thermocapillary
effects arise due to gradients in surface tension, which again may be approximated as
linear in temperature such that

σ = σa − α(T − Ta), (3.15)

where σa is the surface tension at ambient temperature Ta and α is the first derivative
of the surface tension with respect to the temperature at Ta .

4. Analytical solution
The assumption that the Péclet number is small decouples the energy conservation

equation from the Stokes equations (3.6). Therefore, (3.10) is solved first using the
boundary condition (3.13). Equation (3.6) is then solved by introducing the previously
obtained solution for the temperature field in the boundary condition (3.14).

4.1. Non-dimensionalization

The problem is non-dimensionalized as follows:

r̃ = r/Lref , ũ = u/uref , p̃ = p/pref , T̃ = (T − T0)/�Tref , (4.1)

using the scales

Lref = a, �Tref = Φs/4πkwa, uref = |α|�Tref /μ, pref = μuref /a, (4.2)

where �Tref is the characteristic temperature variation induced by a point heat source
of intensity Φs and is obtained directly from the non-dimensionalization of (3.10),
and uref is the characteristic velocity induced by Marangoni stresses due to the
temperature gradient.

The governing equations for the velocity, pressure (3.6) and temperature fields (3.10),
as well as the boundary conditions (3.13) and (3.14) can be rewritten in dimensionless
form

∇p̃ = ∇2ũ, (4.3)

∇ · ũ = 0, (4.4)

∇2T̃ =
δ(|r̃ − r̃0|)
|r̃ − r̃0|2 , (4.5)

−∇T̃ · n = Bi T̃ , (4.6)

t · π̃ · n = t · ∇s T̃ , (4.7)

where Bi = ha/kw is the Biot number. The tildes on top of the dimensionless variables
will be omitted in the following sections; henceforward, all variables are dimensionless
unless otherwise noted.

4.2. Temperature field

The solution to (4.5) is obtained via separation of variables. Because the equation
is linear, the solution can be written as the sum of the Green’s function of the
Laplacian with a singularity at r0, and a continuous function that can be developed
in Legendre polynomials. The problem is assumed to be axisymmetric and, in the
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spherical coordinate system defined in figure 1, the solution to the heat problem can
be written as the following summation:

T (r, θ) =
1

(r2 + 1 − 2r cos θ)1/2
+

∞∑
n=0

cnr
nPn (cos θ) , (4.8)

where Pn is the Legendre polynomial of order n.
By introducing (4.8) into the boundary condition (4.6), the coefficients cn of the

series can be directly identified and evaluated as

cn =
1 − 2Bi

2(n + Bi)
. (4.9)

Details on this derivation can be found in Appendix A.

4.3. Velocity field

For axisymmetric flows, the solution to the Stokes problem can be found in terms
of the Stokes’ streamfunction ψ (Happel & Brenner 1973). The velocity field can
be extracted from the streamfunction using the following relations in spherical
coordinates:

ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
. (4.10)

In spherical coordinates, the axisymmetric Stokes equations (3.6) become

E2(E2ψ) = 0, (4.11)

where

E2 ≡ ∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (4.12)

Using separation of variables, the solution to (4.11) can be written as the following
series:

ψ(r, θ) =

∞∑
n=2

(
Rnr

n + Snr
−n+1 + Tnr

n+2 + Unr
−n+3

)
C−1/2

n (cos θ) , (4.13)

where C−1/2
n is the Gegenbauer polynomial of order n and degree −1/2 defined as

C−1/2
n (cos θ) =

1

2n − 1
[Pn−2(cos θ) − Pn(cos θ)] for n � 2. (4.14)

Details of the derivation of the solution to (4.11) may be found in Happel & Brenner
(1973). The streamfunction (4.13) is then introduced in the boundary condition for the
Stokes flow (4.7) using (4.10), which takes the following form in spherical coordinates:

r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ
= −∂T

∂θ

∣∣∣∣
r=a

. (4.15)

Identifying the coefficients Pn, Qn, Rn and Sn in (4.13) yields an analytical expression
for the streamfunction

ψ(r, θ) = −1

8
(1 − r2)

[
1 + r cos θ − 1 − r2

(r2 + 1 − 2r cos θ)1/2

+

∞∑
n=2

(n − 1) − (2n − 1)Bi

(2n − 1)((n − 1) + Bi)
rn (Pn−2(cos θ) − Pn(cos θ))

]
. (4.16)
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Figure 5. Analytic solution of the temperature field and corresponding streamlines. The
colormap represents the dimensionless analytical temperature field for Bi = 800 and the black
arrows represent the streamlines of the flow in the centreplane defined by ϕ = 0. The analytical
solution is computed using n = 100 terms in the expansion.

Details on this derivation can also be found in appendix A. Using (4.8) and (4.16),
the temperature field and streamfunction can be easily computed. Figure 5 shows the
temperature field (4.8) and the streamlines (4.16). The convergence of the sums in
the expressions for the temperature field and the streamfunction in (4.8) and (4.16)
is dependent on the Biot number Bi. For higher values of Bi, more terms need to
be computed in order to accurately approximate the solution. From the form of the
coefficients, we expect the number of terms required to increase linearly with Bi.
Finally, the velocity field components ur and uθ can be deduced from (4.16) using
(4.10).

5. Experimental results and validation of the model
Using the experimental setup described in § 2, data was collected for a variety of

heat fluxes and drop sizes. The local velocity of the flow at different locations was
determined by tracking particles. Following this procedure, details of the fluid flow
inside the droplet were experimentally reconstructed and compared to the analytical
solution developed in § 4.3.

5.1. Optical correction for spherical droplet

In order to compare the experimentally observed flow field to the analytical solution,
we need to correct the observed particle displacements for the optical deformation
induced by the fluid droplet itself. The image plane from the midsection of the droplet
is focused on the CCD chip of the high-speed camera through the optical system
(see figure 2). However, the hemispherical droplet of water acts as an additional lens
between the midsection of the droplet and the optical system (see figure 6). Applying
the Snell–Descartes law (e.g. Halliday, Resnick & Walker 2005) to light rays close to
the optical axis, the system is found to be stigmatic to the first order and the image
of an object M(0, r) in the midsection appears at the point M ′(p′, r ′) (see figure 6)
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a (mm) Φ (J s−1) �Tref (K) uref (m s−1)

Experiment 1 0.534 0.0139 3.51 0.54
Experiment 2 0.681 0.0453 8.97 1.39
Experiment 3 0.664 0.0657 13.34 2.06

Table 3. Summary of the experimental parameters.

M′ (p′, r′)

nwater ≈ 1.33

nair ≈ 1.00

Optical axis

M (p = 0, r = sinθ)

θ + δθ 
θ – δθ 

θ

Figure 6. Schematic ray-tracing diagram of the geometrical optics for a spherical liquid lens.

such that

p′ = g(r) = −nwater

nair

r sin

[
arcsin r − arcsin

(
nwater

nair

r

)]
, (5.1)

r ′ = f (r) =
nwater

nair

r cos

[
arcsin r − arcsin

(
nwater

nair

r

)]
, (5.2)

where r is the distance from the object to the optical axis (recall that lengths have
been scaled by the drop radius), r ′ the distance from the image to the optical axis, p′

the distance from the image to the midsection plane of the droplet, nwater the index
of refraction of water and nair the index of refraction of air. The optical distortion
increases with distance from the optical axis. When applied to the raw data, this
analysis provides a correction of approximately 17 % (of the radius) for r = 0.65,
which is the upper limit of our recorded data.

5.2. Comparison between experimental and analytical results

To compare the analytical solution of the flow field to the experiment, the velocity
profile along the x-axis was measured by tracking particles in the focal plane whose
trajectories remained close to the x-axis, defined by θ = 0 in spherical coordinates (see
figure 1). The observed position x ′ of the particle along the axis and its velocity |u′|
were recorded and the real position x = r along the x-axis and velocity |u| ≈ |ux | were
deduced by correcting for optical deformation as described in § 5.1: x = f −1(x ′) and
|u| = df −1(x ′)|u′|/dx. Several experiments were performed for different magnitudes
of the heat source Φs , as summarized in table 3. The heat flux Φs , was evaluated
by measuring the rate of change of the radius of the droplet, which is related to
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Analytical solution

Figure 7. Analytic and experimental velocity profile, |u|. The spatial variable x represents the
dimensionless coordinate along the x-axis: x = 0 lies at the centre of the droplet, x = 1 lies
at the contact point. The black line represents the analytic velocity profile in the drop for
Bi = 800. Different symbols correspond to three sets of data with heat sources of different
intensity. Error bars give an estimate of the error in measuring the velocity of a particle by
extracting the position of its centroid in successive frames and hence are a reflection of the
resolution of the image.

the evaporation loss. Assuming that the bulk of the energy transfer was used in the
phase transition, the heat flux is approximated as Φs ≈ 4πa2(da/dt)ρLv . The radius
of the droplet was roughly half a millimetre in all three experiments. The heat source
intensity on the other hand varied significantly between the different experiments (see
table 3). The velocities measured inside the droplets were non-dimensionalized using
the scaling described in equation (4.2).

Figure 7 shows the dimensionless flow velocities from all three experiments
measured along the x-axis and figure 8 represents the experimentally observed particle
pathlines plotted on top of the streamfunction as computed for Bi = 800. Streamlines
were recorded experimentally by tracking one particle over an extended period of
time. The different sets of data shown in figure 7 all collapse onto one curve as
anticipated, supporting our scaling. This confirms that, in the low-Reynolds-number
and low-Péclet-number regime, the internal dynamics and heat transfer of the droplet
depend on only one dimensionless parameter, the Biot number. Also, as predicted by
the model, the velocity is observed to increase rapidly close to the heat source. The
only parameter that is not explicitly known in the experiment is the effective heat
transfer coefficient h, which appears in the Biot number. To calculate the analytic
velocity profile in figure 7, we first computed a family of profiles along x, each profile
corresponding to a different Bi, and fit the data by minimizing the error between
the analytical solution and the experimental data. The fitted Biot number has a
value of Bi = 800, which corresponds to a generalized heat transfer coefficient of
h ≈ 7.1 × 105 Wm−2 K−1. In comparison, the heat transfer coefficient for a sphere in
quiescent air cooled only by diffusion is of the order of 102 Wm−2 K−1, corresponding
to the small Biot number limit in which only small temperature gradients are
expected inside the sphere. This suggests that, in our experiments, evaporation is
the dominant form of heat transfer from the droplet to the surrounding air and
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Figure 8. Analytic and experimental streamlines. The colormap represents the analytic
streamfunction; black lines represent particular streamlines computed analytically; black
squares represent experimentally recorded particle trajectories. The analytical solution is
computed using n = 100 terms in the expansion.

thus h ≈ he†. However, even for heat transfer in systems involving phase changes
(which can easily achieve h’s of the order of 104 or 105 Wm−2 K−1), our value is
quite high and we believe that, in neglecting convective transport (i.e. assuming small
Péclet number everywhere), we are perhaps overestimating h. While our results are
correct to first order, the addition of convective effects would tend to smooth out
the temperature gradient near the singularity, lowering the effective heat transfer
coefficient. A quantitative analysis of the first-order effects of finite Pe is included in
Appendix D.

6. Discussion
In conclusion, we have observed convective structures inside water droplets sitting

on superhydrophobic surfaces. A physical model has been proposed, suggesting that
these structures arise due to thermocapillary-driven Marangoni convection. Because
the Reynolds number and Péclet number are small and viscous dissipation is negligible
in the energy balance, the heat transfer and fluid momentum problems decouple. It is
then possible to find a solution analytically in terms of Gegenbauer polynomials. This
solution has the form of a toroidal vortex and compares favourably with experimental
measurements of particle pathlines inside the drop. By matching the Biot number
from experimental observations to the numerical simulation, we are able to estimate
the effective heat transfer coefficient h ≈ 7.1 × 105 Wm−2 K−1 for droplets sitting on
hot hydrophobic surfaces.

It may come as some surprise that, in our physical model, the dynamics of
the system depends on only one dimensionless parameter, Bi, whereas a standard
dimensional analysis would predict four relevant dimensionless groups: the Reynolds

† This is consistent with our heat flux estimations, since we have chosen Φs ≈
∫∫

φevaporation dS.
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number Re, the Péclet number Pe, the Biot number Bi and the Marangoni number
Ma = αa�T/κμ. However, recall that as a first approximation, both the Reynolds
number and the Péclet are assumed to be small. Since Pe= Re · Pr, the Reynolds
number and the Péclet number cannot be varied independently without changing the
material properties of the fluid. This assumption reduces the number of independent
dimensionless groups to two. Furthermore, the governing equations are linear in
velocity thus the velocity scale may be chosen to eliminate a third dimensionless group.
By using the characteristic Marangoni velocity αΦs/μkw as a reference velocity, the
Marangoni number can be eliminated from the dimensionless governing equations.
Thus, the small Reynolds number assumption combined with the linear structure of
the governing equations leaves only one dimensionless parameter, Bi. Note however
that the dimensional velocities still scale linearly with the Marangoni number.

Furthermore, the analysis could be extended to include the influence of finite Pe
and Re by including a small Pe and Re perturbation about the base state computed
herein. This introduces a weak coupling between the fluid flow and the heat transfer,
ultimately yielding a dimensionless heat transfer correlation function for the Biot (or
Nusselt) number as a function of Re, Pe and Ma. The first-order effects of finite
Péclet number are described in Appendix D, however a detailed analysis is beyond
the scope of the present manuscript.

Finally, it is notable that, in addition to heat transfer applications discussed
herein, the Marangoni convection discussed in this work may be exploited to
enhance micromixing in fluid droplets (Darhuber et al. 2004) and possibly as original
microbiological assays (Chang & Velev 2006).

The authors gratefully acknowledge the support of the National Science Foundation
(CTS-0456092 and CCF-0323672).

Appendix A. Derivation of the analytical solution
In this appendix we present the detailed derivation of the analytical solution. The

boundary condition (4.5) takes the following dimensionless form:

− ∂

∂r
T (r, θ)

∣∣∣∣
r=1

= Bi T (1, θ). (A 1)

The a priori expression for the temperature (4.8) is differentiated with respect to r

∂

∂r
T (r, θ)

∣∣∣∣
r=1

= − 1 − cos θ

(2 − 2 cos θ)3/2
+

∞∑
n=0

ncnPn(cos θ). (A 2)

This expression (A 2) is introduced in the boundary condition (A 1) and yields the
following relationship:

∞∑
n=0

(n + Bi)cnPn(cos θ) =
1 − 2Bi

2(2 − 2 cos θ)1/2
. (A 3)

Using the identity

1

(r2 + 1 − 2r cos θ)1/2
=

∞∑
n=0

rnPn (cos θ) (A 4)
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at r = 1 and the fact that the Legendre representation is unique, the coefficients cn

can be determined to be

cn =
1 − Bi

2(n + Bi)
. (A 5)

Expanding the streamfunction in Gegenbauer polynomials (4.13) in (4.10) and using
the identities from Appendix B yields the following series expansion for the radial
velocity:

ur =

∞∑
n=2

(
Rnr

n−2 + Snr
−(n+1) + Tnr

n + Unr
−(n−1)

)
Pn−1(cos θ). (A 6)

Since ur has to be bounded at r = 0, the coefficients Sn and Un must vanish. Also, the
radial velocity must vanish at the interface r = 1 for the droplet to remain spherical,
thus Tn = −Rn. Hence the expansion (4.13) of the streamfunction can be rewritten in
a simpler form

ψ(r, θ) =

∞∑
n=2

Rn(r
n − rn+2)C−1/2

n (cos θ) . (A 7)

The expression for the temperature field (4.8) and for the streamfunction (A 7) are
introduced in the tangential stress boundary condition (4.7):

∞∑
n=2

2(1 − 2n)Rn

C−1/2
n (cos θ)

sin θ
=

sin θ

(2 − 2 cos θ)3/2
+

∞∑
n=2

n(n − 1)cn−1

C−1/2
n (cos θ)

sin θ
. (A 8)

Using the identity

sin θ

(2 − 2 cos θ)3/2
=

∞∑
n=2

n(n − 1)
C−1/2

n (cos θ)

sin θ
(A 9)

the tangential stress boundary condition yields the equation

∞∑
n=2

2Rn(2n − 1) C−1/2
n (cos θ) = −

∞∑
n=2

(1 + cn−1)(n − 1)n C−1/2
n (cos θ). (A 10)

Thus, Rn = −n(n − 1)(1 + cn−1)/(4n − 2) , ∀ n � 2. Rearranging the different terms, in
order to isolate the singularity at r0 yields the final expression for the stream velocity
(4.16).

Appendix B. Properties of Gegenbauer polynomials

dC−1/2
n (cos θ)

dθ
= sin θ Pn−1 (cos θ) ,

dPn−1(cos θ)

dθ
= −n(n − 1)C−1/2

n (cos θ)

sin θ
.

Appendix C. Validity of the point heat source approximation
Here, we investigate the validity of the point heat source assumption. As droplet

size decreases, the radius � of the contact region between the droplet and the substrate
decreases rapidly as suggested by the scaling given in (3.3). In our experiments, the
ratio between the radius of the contact region and the radius of the droplet is on the
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order of �/a ≈ 10 % (see figure 3). To determine whether the finite extent of the heat
source in the experiments has a significant impact on the observed flows, we model
the source as a distributed heat source rather than as a singular point. The governing
equations for the heat transport problem (3.10) and (3.13) are replaced by

kw∇2T α = 0, (C 1)

−kw∇T α · n = h(T α − T0) +
Φs

4πa2
f α(cos θ), (C 2)

which can be written in non-dimensional form as

∇2T α = 0, (C 3)

−∇T α · n = Bi T α + f α(cos θ). (C 4)

The function f α(cos θ) characterizes the distribution of the heat source, subject to the
normalization constraint ∫ π

0

f α(cos θ) sin θ dθ = 2. (C 5)

Here, we consider a sequence of functions f α defined as follows:

f α(cos θ) =

⎧⎨
⎩

6(cos θ − cos α)2

(1 − cosα)3
0 � θ � α,

0 α � θ � π

where α characterizes the area over which the heat source is distributed. As α

decreases, this sequence of functions converges to a delta function.
A derivation similar to the one presented in Appendix A yields the following

expressions for the temperature field and the streamfunction:

T α(r, θ) =

∞∑
n=0

f α
n

n + Bi
rnPn(cos θ), (C 6)

ψα(r, θ) =

∞∑
n=2

− n(n − 1)f α
n−1

2(2n − 1)(n − 1 + Bi)
(rn − rn+2)C−1/2

n (cos θ), (C 7)

where

f α
n =

2n + 1

2

∫ 1

−1

f α(x)Pn(x) dx. (C 8)

Figure 9(a) shows the convergence of the solution T α for a distributed heat source
to the solution T for a point heat source as α goes to zero. Figure 9(b) shows the
magnitude of the flow velocity along the x-axis within the region of the droplet that
can be observed experimentally (see figure 7). The velocity profile for a heat source
distributed over 20 % of the radius is already very close to that of a point heat
source and, not surprisingly, the convergence is even more pronounced for a source
distributed over 10 % of the radius. As expected the distribution of the heat source
only affects the solution of the flow in the vicinity of the contact region. In the present
study, our model is always compared to experimental data in a region of the droplet
sufficiently far from the contact point (see figure 9b) and hence, the heat source can
be safely represented as a point source.
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Figure 9. (a) Error ‖T − T α‖2 as a function of α showing the convergence of the sequence
T α to the point heat source solution T . (b) Velocity profile |u| along the x-axis for the point
heat source solution and for distributed heat source solutions with �/a = 10%and 20%.

Appendix D. Effect of finite Péclet number
Here, we investigate the first-order effect of heat advection on the steady-state

temperature, pressure and velocity fields. For a finite Péclet number, the governing
equations in non-dimensional form can be written as

∇2T − δ(|r − r0|)
|r − r0|2 = Pe u · ∇T , (D 1)

∇2u = ∇p, (D 2)

∇ · u = 0, (D 3)

−∇T · n = Bi T , (D 4)

t · π · n = t · ∇sT . (D 5)

The fields are each split into two terms: u = u0 + u1, T = T0 + T1 and p = p0 + p1,
where the subscript ‘0’ represents the known analytical solution to the zero Péclet
number problem (4.8) and (4.16) and the subscript ‘1’ represents the perturbation
fields due to the nonlinear advection term for finite Péclet number. This splitting
scheme is introduced in (D 1), (D 2), (D 3), (D 4) and (D 5). The solution (u0, p0, T0)
to the linear system with a point heat source is substracted from the finite Péclet
number system, leading to a set of equations for the perturbation field (u1, p1, T1).
These equations are discretized using finite differences and the full nonlinear system
is solved using the following iteration scheme:

∇2T n+1
1 − Pe

(
u0 + un

1

)
· ∇T n+1

1 = Pe
(
u0 + un

1

)
· ∇T0, (D 6)

∇2un+1
1 = ∇pn+1

1 , (D 7)

∇ · un+1
1 = 0, (D 8)

−∇T n+1
1 · n = Bi T n+1

1 , (D 9)

t · πn+1
1 · n = t · ∇sT

n+1
1 . (D 10)

The iteration procedure is stopped once the convergence criterion ‖un+1
1 − un

1‖2 � ε

is satisfied.
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Figure 10. (a) Effect of increasing Biot number and increasing Péclet number on the velocity
along the x-axis. (b) ‘Effective Biot number’ for which the velocity profile of the numerical
solution along the x-axis best fits the analytical Pe = 0 solution as a function of the Péclet
number.

When the advection term is included, cool water is advected downwards through
the centre of the droplet towards the contact point, which lowers the temperature in
this region. Similarly heat is swept away from the contact region and advected to
the sides of the droplet, which reduces temperature gradients in the neighbourhood
of the source. The general effect is to decrease the Marangoni stress at the surface
of the droplet and thus, for a given Biot number, we expect to observe smaller
velocities. Hence, increasing the Péclet number has a similar effect on the velocity
field as increasing the Biot number: both tend to lower the temperature gradient at
the surface and as a consequence the Marangoni stress; therefore, it is expected that
for a given Péclet number the Biot number required to fit the experimental data will
be lower than the first-order estimate in which we neglected heat advection.

This can be seen in figure 10(a). Consider a velocity profile along the x-axis for
a Biot number of Bi = 600 and a Péclet number of Pe = 3500. This velocity profile
is almost indistinguishable from the velocity profile for Bi = 650 and Pe = 0. To
quantify this feature, we define an ‘effective Biot number’, BiEff (Pe), which is the Biot
number at a given Péclet number that matches the Pe =0 velocity profile when heat
advection is neglected (in this example, BiEff (Pe = 3500) = 650). It can readily be seen
that increasing the Péclet number has a similar influence on the velocity profile as
increasing the effective Biot number.

Note that even at a seemingly large Péclet number of Pe = 3500, the heat advection
term remains small within most of the volume of the droplet and is only non-negligible
in the neighbourhood of the contact region. This is because the Péclet number is
proportional to the reference velocity uref used in the non-dimensionalization, which
represents the velocity induced close to the heat source singularity (see § 4.1). In
contrast, the value of the Péclet number computed with the flow velocity measured
at the centre of the droplet is small as discussed in § 3.2. Figure 10(b) characterizes
the increase in effective Biot number as the Péclet number is increased for a fixed
Biot number. The effective Biot number is found by minimizing the error between the
velocity profile computed at a given Biot and Péclet number, and the velocity profiles
for a given Biot number with no heat advection. As expected, the effective Biot
number always increases with increasing Péclet number indicating that, by neglecting
heat advection, our lowest order model is likely to overestimate the Biot number
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and the effective heat transfer coefficient. The severity of the error is illustrated in
figure 10(b) for the parameter regime where the heat advection terms remain small
and the governing equations are only weakly nonlinear.

REFERENCES
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